
Adaptive Resource Allocation Control with
On-Line Search for Fair QoS Level

Fumiko Harada, Toshimitsu Ushio,
Graduate School of Engineering Science

Osaka University
{harada@hopf., ushio@}sys.es.osaka-u.ac.jp

Yukikazu Nakamoto
NEC System Platforms Research Laboratories

nakamoto@ct.jp.nec.com

Abstract

Recently, applications of control theory to avoid over-
load conditions have been studied. But, in conventional
feedback theory, control input is determined by an error be-
tween a reference value of a controlled signal and its cur-
rent value. In real-time systems, a set of active tasks may
be time-varying so that the reference value may change ac-
cording to the set. In this paper, we proposed a novel con-
trol method for a fair resource allocation and QoS levels
of tasks are used as controlled signals. The proposed adap-
tation controller allocates a CPU utilization factor to each
task with on-line search for the fair QoS level, and the pro-
posed control rule is based on errors between the current
QoS levels and their average. Its computation time is small
so that it does not yield a heavy overhead.

1. Introduction

In real-time systems, overload conditions bring up the
significant decrease of system response predictability and
performance[1]. To avoid the overload conditions in the
real-time systems, admission controls are utilized in which
a guarantee test is executed whether a task execution is al-
lowed at its arrival. Recently methodologies are proposed
where CPU utilization factors are decreased according to a
QoS(quality of service) level allocated to each task to avoid
the overload conditions.

Flexible applications exist in which QoS is improved
as long as its computation time and resources increase[2].
In flexible applications, the QoS level indicates a satisfac-
tion level of users for an execution result of released jobs.
As an example of flexible application, there is an MPEG
video playback application. In an MPEG application, I-
frame playbacks, B-frame and P-frame playbacks are de-
manded. B-frame and P-frame playbacks handle differen-
tial frames with I-frame. As CPU time and resources for

B-frame and P-frame playbacks increase, more precise im-
ages in the playback are produced. When each flexible ap-
plication in a system increases the QoS level simultane-
ously, however, the system becomes overload conditions. To
avoid the conditions, arbitrating the QoS levels of the com-
petitive applications are required.

There are several researches to arbitrate the competitive
application or tasks in real-time systems. Abdelzaheret al.
have proposed a method where the acceptable QoS levels
of tasks in overload conditions are describeda priori and
the system degrades the QoS levels of the tasks based on
the QoS level description at overload conditions[3]. How-
ever, this study does not consider dynamic negotiation of
QoS levels of tasks. Buttazzoet al.have introduced an elas-
tic task execution model where task executions can be ex-
panded and shrunk like an elastic spring and proposed an al-
gorithm to degrade the task execution time to handle over-
load conditions[4, 5]. A software designer must model ap-
plication programs as the elastic model. Rajkumaret al.
have proposed the QoS-based resource allocation model
to solve problems when applications in real-time systems
have simultaneous access to multiple resource[6]. In their
works, they obtained conditions where overall system util-
ity is maximized under the constraint that each application
can meet its minimum needs. Oikawa and Rajkumar have
proposed software architecture and module APIs to man-
age resource reservation for timely guaranteed behavior of
real-time programs and developed the portable kernel mod-
ule based on the APIs[7]. The kernel module provides an
admission control function to manage the resource reserva-
tion.

Recently, much attention has been paid to applications
of the control theory to real-time systems. The control the-
ory is applied to manage CPU usage in real-time systems
in [8]. In this study, a PID(Proportional-integral-derivative)
controller is used to control CPU utilization time. However,
conditions of the PID controller, under which a system sta-
tus is transited to an expected one, are not obtained theo-
retically. To maintain CPU utilization factors and deadline

miss ratios with specified values, the feedback control theo-
ries are utilized. For example, in [9], given relative reference
values of task’s deadline, deadline miss ratios are controlled
within specified certain ranges by reserving CPU times with
a PID controller based on the difference between the refer-
ence values and actual deadlines. Luet al. have proposed a
gain feedback control method with given reference values
for CPU utilization factors and deadline miss ratios[10, 11].
Abdelzaheret al. use PI controllers for control of the CPU
utilization factors in Web server end-systems. Moreover, re-
cently, hybrid controllers have been proposed in [12]. All of
them require reference values of controlled variablesa pri-
ori. In real-time systems where controlled tasks changes as
the time elapses, however, the reference values depend on
controlled tasks and must be recalculated. In the recalcula-
tion, solving nonlinear equations requiresO(n2) computa-
tion time, wheren is the number of the tasks, and charac-
teristics of QoS levels of all tasks must be known.

When CPU utilization factors are decreased with the
same ratio for all tasks to avoid overload conditions or to
arbitrate the QoS levels of competitive tasks, the quality of
services of tasks varies and the deviation of the QoS levels
could occur. To prevent unfairness of QoS levels, this pa-
per proposes a QoS adaptive control algorithm to equalize
the QoS levels of all active tasks under a constraint where
the total CPU utilization factor is constant. The proposed
controller obtains a QoS level of each task as feedback data
through a monitor and allocates a CPU utilization factor to
each task adaptively. The tasks adapt their jobs’ parame-
ters to complete the jobs using the allocated CPU utiliza-
tion factors and release their jobs. A novelty of the proposed
method is that it searches a desirable value on-line without
increase of computation time in the controller.

The paper organizes as follows: Section 2 introduces a
normalized QoS level and define a fairness of QoS levels.
Section 3 proposes a resource resource allocation architec-
ture and QoS adaptation controller to achieve fairness of
QoS. In Section 4, we describe about analysis and design
of the QoS adaptation controller. Section 5 shows the re-
sults of simulation experiment of our method. Finally, Sec-
tion 6 concludes this paper.

2. Task model and QoS fairness

In this paper, we deal with a real-time system with a
set of periodic independent tasks{τ1, τ2, . . . , τN} and one
CPU resource. Each taskτi releases thè-th job J`

i with a
CPU utilization factorr`

i at timet`i , periodically, and it is as-
sumed that every jobJ`

i is executed and completed such that
the allocated CPU utilization factorr`

i is satisfied. We intro-
duce a QoS adaptation controller which allocates a CPU uti-
lization factorr`

i to taskτi. Shown in Fig. 1 is an illustra-

����������	�
 ���

����
� 	�����	���	��

�������

�������

������ � ���������� ���
!��� � �"��

 �#�
$ ��� � �#�

% ��&'�(�)+*-,/.10 2+3

� ��
 � ��� ����45 ��& �

6�7+89;:=<�:+> ?@BA1C > C DFE/A1C 7+G

.

.

.

.

.

.

H;IKJ�LFM NPOQNPRS IUTPV

����������	�
 ��W

XZY\[
]F^/_a`Ub=c/d/ded"fPgehjiakUl m�n1oqpertsvuvuvu waxzy;{q|e}

~��

���

Figure 1. Real-time systems with QoS adap-
tation control.

tion of the control architecture whose details will be shown
in the next section.

An execution result of every job released by the tasks is
evaluated as a QoS level. Denoted byQoS`

i is a QoS level
of job J`

i . Obviously,QoS`
i depends on bothr`

i and a QoS
characteristics of taskτi. Each task has a minimal and a
maximal QoS requirementQoSmin

i andQoSmax
i , respec-

tively, whereQoSmin
i represents the worst QoS level ac-

ceptable to executeτi and theQoSmax
i the best QoS level

τi requires. In order to achieveQoSmin
i andQoSmax

i , task
τi needs specified CPU utilization factorsrmin

i andrmax
i , re-

spectively. In this paper, we assume the QoS levelQi(r) of
taskτi is modeled by a real-valued function of the CPU uti-
lization factorr which is continuous and monotonically in-
creasing.

In multi-task real-time systems, resource allocation may
cause unfairness in the following sense: we consider two
tasksτ1 andτ2, and both tasks release jobs with the same
CPU utilization factorr. If r = rmax

1 = rmin
2 holds, one is

executed with its maximal QoS level and the other with its
minimal QoS level. This situation is not preferable. In or-
der to evaluate such unfairness, we introduce a normalized
QoS levelφi for taskτi as follows:

φi(r) :=





0 if ri < rmin
i ,

Qi(r)−QoSmin
i

QoSmax
i −QoSmin

i
if rmin

i ≤ r ≤ rmax
i ,

1 if ri > rmax
i .

(1)

Note thatφi(r) is a monotonically increasing function from
0 to 1 with respect tor, and represents the rate of achieve-
ment of the QoS level in the sense thatφi(rmin

i) = 0
means that taskτi releases a job with its minimal QoS level

����� � � ������� 	�

1

��
���������� ��

���������!

" #
$&%

Figure 2. Illustration of function φi.

QoSmin
i while φi(rmax

i) = 1 means that the job is exe-
cuted with its maximal QoS levelQoSmax

i .

Definition 1 (QoS Fairness) It is called that a fair re-
source allocation is achieved by a CPU utilization factors
ri(i = 1, 2, . . . , N) if the normalized QoS levelsφi sat-
isfy the following equation:

φ1(r1) = φ2(r2) = · · · = φN (rN). (2)

When every job of taskτi is released with the CPU uti-
lization factorri that satisfies Eq. (2), all tasks can be exe-
cuted and completed with the same degree of performance.

SinceQoSi is monotonically increasing, the shape of
φi(r) can be illustrated as Fig. 2. In the following, a nor-
malized QoS level will be called a QoS level for short. We
assumeφi is unknown except the following conditions:

• φi(r) is differentiable inr ∈ (rmin
i , rmax

i).

• For anyr ∈ (rmin
i , rmax

i), 0 <
dφi

dr
≤ Di.

• In order to guarantee that every job is completed by its
deadline,

∑N
i=1 rmin

i ≤ R ≤ ∑N
i=1 rmax

i , whereR is
the desired total CPU utilization factor for which the
task set is schedulable.

3. QoS adaptation control

3.1. Architecture

In order to avoid an overload condition and to achieve
the fair allocation of CPU utilization factors, we propose
an adaptation resource allocation control architecture with
on-line search for the fair QoS level shown in Fig. 1, which

consists of a basic scheduler, a QoS adaptation controller,
and a monitor.

The monitor evaluates a normalized QoS level of each
completed job and feeds it back to the QoS Adaptation con-
troller.

The QoS adaptation controller activates periodically or
aperiodically, and allocates the CPU utilization factors to
each task with searching a fair QoS level on-line. This allo-
cation is based on the normalized QoS levels fed back from
the monitor. A control rule used in the QoS adaptation con-
troller will be dealt with in the next section.

The basic scheduler works with a specified scheduling
algorithm (e.g., EDF, RM, or DM algorithm). Released jobs
are scheduled based on the CPU utilization factor allocated
to these corresponding tasks by the QoS adaptation con-
troller. We assume that the least upper bound of the total
CPU utilization factorU lub for the basic scheduler is known
a priori. The allocation by the QoS adaptation controller is
done such as the total CPU utilization factor is less than or
equal toU lub. The desired total CPU utilization factorR is
less than or equal toU lub.

The following notations will be used in this paper:

• tk: the time ofk-th activation of the QoS adaptation
controller.

• ri(k) = ri(tk): the CPU utilization factor allocated to
task τi by the QoS adaptation controller activated at
time tk.

• Qi(k) = φi(ri(tk)): the normalized QoS level of the
completed job of taskτi whose CPU utilization factor
is equal tori(tk).

To perform the fair QoS adaptation control, this controller
dynamically allocatesri(k) for achieving

Q1(k) = Q2(k) = · · · = QN (k) (3)

under
N∑

i=1

ri(k) = R. (4)

Sinceφi is continuous and monotonically increasing, a set
of the fair utilization factors{rf

1 , . . . , rf
N}, which satisfies

Eqs. (3) and (4), is uniquely determined under the total CPU
utilization factorR and denoted byQf is a QoS level where
the fair QoS allocation is achieved. If we knowQf , it is
easy to achieve a fair resource allocation by using the con-
ventional control theory. In order to obtainQf , however,
we have to identify the characteristics ofφi exactly, and it
may be a heavy overload to calculateQf on-line sinceφi

is nonlinear and we have to solve a set of nonlinear alge-
braic equations. So resource allocation method usingQf

is unrealistic and we propose a novel architecture where
the QoS adaptation controller allocates a CPU utilization
to each task with avoiding the overload condition, searches

���������
	����

���
�������� ���
� ����
��
�����

��� �

!�"$# %'&)(+*
,'-/. 0'1)2/3
465/7 8:9

;=<?>$@BA C
DD

E6FG
HJIK

LJMN OQPR

SUTT

VXWZY\[]�^ _�`Bacb

Figure 3. Variation of QoS levels.(Jk
i : the k-th

job of task τi, i = 1, 2)

the fair QoS level on-line, and achieves a fair resource allo-
cation finally.

3.2. Activation of controller

As described in the previous section, the controller ac-
tivates at discrete timestk(k = 1, 2, . . .). When the
QoS adaptation controller activates at the timet = tk,
it updatesr1(k), . . . , rN (k) based on QoS levelsQ1(k −
1), . . . , QN (k − 1), which are fed back. The CPU utiliza-
tion factors of all jobs released by taskτi in every time inter-
val [tk, tk+1) are equal tori(k). After these jobs are com-
pleted, the QoS levelQi(k) is fed back to the QoS adap-
tation controller through the monitor. Since the allocated
CPU utilization factors to all jobs released byτi in the in-
terval are same, we can assume that their QoS levels are the
same in the interval. Variation ofQi(k) is illustrated as Fig.
3.

In order to update the QoS levels of all tasks after the
activation of the QoS adaptive controller, we assume that
the interval of activation of the QoS adaptation controller
is large enough for at least one job of each task to be re-
leased and completed in[tk, tk+1).

3.3. Control rule

Conventional feedback control rules such as PID control
are based on an error between a reference value and its cur-
rent value in general, and the previous studies on applica-
tions of control theory to real-time systems assume that the
reference values (depending on control specifications) are
givena priori [8, 10].

����� ����� ��� 	
��
��
������ ��� ���
���� ����� �

������ ! ��" " #�!��$

������ ! ��" " #�!��$

������ ! ��" " #�!��$

% % % % % %
% % %

&('�)+*-,
.0/�132�4

5(687+9�: ; <>=@?
A B+C�D

EGF�H3I�J

K0L�M3N�O

P(Q8R+S�T

U�VXW>Y[Z

\^]`_ba@c

d�e�fbg�h

ikj

lnm

oqp

Figure 4. QoS adaptation controller.

In this paper, control specifications are that all QoS lev-
els of tasks are equal to the fair QoS levelQf . But, since
it depends on a set of active tasks which will be time vary-
ing, it is difficult to use the conventional feedback control
rules for the control specifications. So this paper proposes
a novel control rule which uses only the current QoS lev-
elsQ1(k), Q2(k), . . . , QN (k).

The proposed control rule is based on an error between
Qi(k) and the average QoS levelQ(k) of all QoS levels
Qi(k) defined by

Q(k) =
1
N

N∑

i=1

Qi(k). (5)

If the error is zero, all QoS levels take the same value and
the fair resource allocation is achieved.

So, in order for the error to converge to zero, we propose
the following control rule for the allocation of the CPU uti-
lization factorri(k):

ri(k + 1) = ri(k) + α(Q(k)−Qi(k)), (6)

where the real numberα is a control parameter. Shown in
Fig. 4 is a block diagram of the adaptation controller based
on the above control rule. The main objective of this rule is
to achieve the fair resource allocation, and this rule is based
on discrete-time I(Integral)-control. Note that this control
rule is simple and its calculation requiresO(n) computa-
tion time. Eq. (6) indicates that if the error between the av-
erage QoS levelQ(k) andQi(k) becomes zero,ri(k) takes
a constant value, which means a fair resource allocation is
achieved. IfQ(k)−Qi(k) > 0, then the allocated CPU uti-
lization factorri(k + 1) at the next activation of the QoS
adaptation controller is increased so that released jobs ofτi

will be completed at a larger QoS level. On the other hand, if

Q(k)−Qi(k) < 0, thenri(k+1) is decreased so that its re-
leased job will be completed at a smaller QoS level. Thus,
all QoS levels are expected to converge to the same value.
Moreover, Eq. (6) guarantees that, at each activation time of
the QoS adaptation controller, the total CPU utilization fac-
tor

∑N
i=1 ri(k) is always constant. This is derived from the

following equation:

N∑

i=1

ri(k + 1) =
N∑

i=1

ri(k) + α

N∑

i=1

(
Q(k)−Qi(k)

)

=
N∑

i=1

ri(k)

=
N∑

i=1

ri(k − 1) = · · · =
N∑

i=1

ri(0). (7)

Thus, if the initial resource allocation{r1(0), . . . , rN (0)}
satisfies

∑N
i=1 ri(0) = R, then

∑N
i=1 ri(k) = R for anyk.

In Eq. (6), the selection of the gain parameterα is im-
portant. It must be selected such that the following two con-
ditions are satisfied:

• [Feasibility condition] Eachri(k)(r = 1, 2, . . ., N)
is positive for everyk.

• [Stability condition] Every CPU utilization factorri

converges to the fair resource allocation.

In the next section, we will deal with the above two con-
ditions.
Remark: Many studies use PI- or PID-control[8, 9]. From
the control theoretical point of view, our control specifica-
tion is a kind of servo with a piecewise-constant reference,
which is unknowna priori, and, by the internal model prin-
ciple, we need I-control for eliminating offset[13]. Fortu-
nately, we can show in the next section that the above two
conditions hold simultaneously without PD-control if we
select the control parameterα appropriately.

4. Analysis of the control rule

4.1. Feasibility condition

If the gain parameterα of the control rule (6) is too
large, ri(k) will cause a large variation even if the error
|Q(k)−Qi(k)| is small. Sori(k) may take a negative value,
which is infeasible for scheduling. The following lemma
guarantees the feasibility of the control rule.

Lemma 1 (Feasibility condition) Assume thatri(0) ≥ 0
and

∑N
i=1 ri(0) = R. If

0 < α ≤ 1
maxi Di

, (8)

thenri(k) ≥ 0 for everyk.

Proof:
Sincedφi(ri)/dri ≤ Di andφi(0) = 0, we haveQi(k) ≤
Diri(k).

We will use the induction method. Suppose thatri(k) ≥
0 and

∑N
i=1 ri(k) = R for k. Then

ri(k + 1) = ri(k) + α(Q(k)−Qi(k))

≥
(

1
Di

− 1
maxj Dj

)
Qi(k) + αQ(k)

≥ 0.

¤

4.2. Stability condition

Assume that
∑N

i=1 ri(0) = R, which keeps the total
CPU utilization factor toR, from Eq. (7). A fair resource al-
locationri(k) with Q1(k) = Q2(k) = · · · = QN (k) = Qf

is a fixed point of Eq. (6). We will derive a stability condi-
tion for the fair resource allocation. Let

r(k) :=




r1(k)
r2(k)

...
rN−1(k)


 , Q(k) :=




Q1(k)
Q2(k)

...
QN (k)


 . (9)

Note thatrN (k) is excluded in the vectorr(k) since it is de-
termined byrN (k) = R−∑N−1

i=1 ri(k).
By Eq. (6) andQi(k) = φi(ri(k)), the real-time system

is modeled by the following difference equation:

r(k + 1) = r(k) +




Q(k)
...

Q(k)


−Q(k)

= r(k) +


1−N
N

1
N · · · 1

N
1
N

1
N

1−N
N · · · 1

N
1
N

...
.. .

...
1
N

1
N · · · 1−N

N
1
N




×




φ1(r1(k))
...

φN−1(rN−1(k))
φN (R−∑N−1

i=1 ri(k))


 . (10)

Now let

∆r(k) := r(k)−




rf
1
...

rf
N−1


 , (11)

∆φi(ri) := φ(ri − rf
i)−Qf . (12)

Note thatrN (k)−rf
N = −∑N−1

i=1 ∆ri(k) and0 < d∆φi

d∆ri
≤

Di. Then, Eq. (10) can be rewritten as follows:

∆r(k + 1) = ∆r(k) +

α




1−N
N

1
N · · · 1

N
1
N

1
N

1−N
N · · · 1

N
1
N

...
. . .

...
1
N

1
N · · · 1−N

N
1
N




×




∆φ1(∆r1(k))
...

∆φN−1(∆rN−1(k))
∆φN (−∑N−1

i=1 ∆ri(k))


 (13)

The linearized equation of Eq. (13) around the origin is
given by

∆r(k + 1) = A∆r(k) := (aij)∆r(k), (14)

aij =
{

1− α
N {(N − 1)di + dN} if i = j,

α
N (dj − dN) otherwise, (15)

where

di =
d∆φi(0)

d∆ri
=

dφi(r
f
i)

dri
, i = 1, 2, . . . , N. (16)

A stability condition of the origin of Eq. (14) is given by the
following lemma.

Lemma 2 (Stability condition) If

0 < α ≤ N

(N − 1)maxi di + dN
, (17)

then the origin of Eq. (14) is asymptotically stable.

Proof:
Denoted by‖ · ‖ is the L1 matrix norm[14]. Since
‖∆r(k + 1)‖1 ≤ ‖A‖1‖∆r(k)‖1, it is sufficient to prove
that‖A‖1 < 1, which leads tolimk→∞∆r(k) = 0. With-
out loss of generality, assume that

dN ≤ di, i = 1, 2, . . . , N − 1. (18)

Then, using Eqs. (17) and (18), we have

‖A‖1 = max
j

N−1∑

i=1

|aij |

= max
j

[
1− α

N
{(N − 1)dj + dN}

+
N−1∑

i 6=j,i=1

α

N
(dj − dN)




= max
j

[
1− α

N
{(N − 1)dj + dN}

+
N − 2

N
α(dj − dN)

]

= max
j

[
1− α

N
{dj + (N − 1)dN}

]

< 1.

task τ1 τ2 τ3 τ4 τ5 τ6

period 500 400 700 600 300 600
phase 0 40 30 50 10 0

Di 2.50 6.28 1.90 2.00 3.14 2.36
rmin

i 0 0 0.029 0 0 0
rmax

i 0.40 0.250 0.857 0.50 0.50 0.333
φi (I) (IV) (II) (I) (III) (III)

1*: every period is equal to its corresponding relative
deadline.

Table 1. Task parameters for simulation.

¤

4.3. Selection ofα

According to Lemmas 1 and 2, Eqs. (8) and (17) give suf-
ficient conditions to achieve a fair resource allocation con-
trol.

Since

max
i

Di ≥ dj , j = 1, 2, . . . , N, (19)

Eq. (8) implies Eq. (17). Thus, even ifdi is unknown, we
can use a sufficient condition for both the feasibility and the
stability to hold simultaneously shown in the following the-
orem.

Theorem 1 (Fair resource allocation condition) Assume
that ri(0) ≥ 0 and

∑N
i=1 ri(0) = R. If Eq. (8) holds, each

Qi(k) converges toQf with satisfying that0 ≤ ri(k) ≤ R

and
∑N

i=1 ri(k) = R for everyk.

5. Simulation

We show simulation experiments to evaluate the perfor-
mance of the proposed QoS adaptation control. We consider
a periodic task set{τ1, τ2, . . . , τ6} shown in Table 1. Each
task has a relative deadline equal to its period. Eachφi is
one of the following functions:

(I)Qi(k) = (ri(k)− rmin
i)/(rmax

i − rmin
i) (20)

(II)Qi(k) = sin
π(ri(k)− rmin

i)
2(rmax

i − rmin
i)

(21)

(III)Qi(k) = 0.5 + 0.5 sin
π

(
ri(k)− rmax

i −rimin
2

)

rmax
i − rmin

i

(22)

(IV)Qi(k) = 1 + sin
π(ri(k)− rmax

i)
2(rmax

i − rmin
i)

(23)

The QoS adaptation controller activates every 2000 unit
times, namelytk = 2000 × k. This guarantees that at least

one job is released and completed for each task in the inter-
val of activations[tk, tk+1]. The gain parameterα is set to
be1/6.28(≈ 0.159), which satisfies Eq. (8).

Two typical scheduling algorithms for basic scheduler
are used in simulations.

A: We use theEarliest Deadline First(EDF) algorithm. We
setR = 0.8 so that it is schedulable[1, 2]. In this case,
the theoretical valueQf of a fair QoS level is equal to
0.26 by solving Eqs. (3) and (4), numerically.

B: We useRate Monotonic(RM) algorithm. We setR =
0.6 so that schedulability for any periodic task set is
guaranteed[1, 2]. In this case, we haveQf = 0.17.

The results of simulationsA andB are as shown in Figs.
5 and 6, respectively. These figures show that fair resource
allocations are achieved after some times of activation of the
controller. Moreover, in both simulations, everyQi(k) con-
verges to the theoretical valueQf of the fair QoS level and
no deadline miss occurs. Thus, these simulations show that
the proposed QoS adaptation control method achieves a fair
resource allocation without an overload condition.

6. Conclusions

We proposed a novel control method for a fair resource
allocation based on QoS levels. The proposed adaptation
controller allocates a CPU utilization factor to each task
with on-line search for the fair QoS level, and the proposed
control rule is simple since allocations is based on errors be-
tween the current QoS levels and their average. So, its com-
putation time is small so that it does not yield a heavy over-
head.

As future work, we are relaxing the fair resource alloca-
tion condition given by Theorem 1, which is a sufficient
condition, and it is shown in simulation that the fair re-
source allocation can be achieved even if the gain param-
eter is larger than Eq. (8). Moreover, we focused on the sta-
bility and the feasibility, but transient behavior of controlled
QoS levels is also an important problem.

It is also future work to generalize the proposed method
to a multiple resource case and a multiple QoS dimensions
case.

References

[1] G. Buttazzo, Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications, Kluwer
Academic Publishers, Boston, 1997.

[2] J. Liu, Real-Time Systems, Prentice Hall, Upper Saddle
River, NJ, 2000.

[3] T. Abdelzaher, E. Atkins, and K. Shin, “QoS Negotiation in
Real-Time Systems and its Application to Automated Flight

�
��� ���
��� �
��� ���
��� �
��� ���
��� �
��� ���
��� 	
��� 	��

� � ��� ��� �
� ��� ��� ��� 	
�
��
 ����� �
�����

�
1

� �
��
��
�

!�"$# %$%�# &�'�(

)
2*
3
+,
4
-.
5
/0
6
1

2�34 5
6

��� ���
��� ���
��� ���
��� ���
��� 	
��� 	
�
��� 	
�
��� 	
�
��� 	
�
��� �

� � 	�� 	
� �
� �
� ��� �
� ���

� �

�
� ����� �������

�
1

��� � !
"�� #
$

%'& � �'�(� ���')

*
2
+,
3
-.
4
/0
5
12
6
3

4 56

Figure 5. Behavior of QoS level and CPU uti-
lization with EDF scheduling and R = 0.8.

Control”, Proceedings of the 3rd IEEE Real-Time Tech-
nology and Applications Symposium, Montreal, June 1997,
pages 228–238.

[4] G. Buttazzo and L. Abeni,“Adaptive Workload Management
through Elastic Scheduling,”Real-Time Systems, July 2002,
pages 23(1–2):7–24.

[5] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elas-
tic Scheduling for Flexible Workload Management,”IEEE
Transactions on Computers, March 2002, pages 51(3):289–
302.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Re-
source Allocation Model for QoS Management,”Proceed-
ings of the 18th IEEE Real-Time Systems Symposium, San
Francisco, December 1997, pages 298-307.

[7] S. Oikawa and R. Rajkumar, “Portable RK: a Portable Re-
source Kernel for Guaranteed and Enforced Timing Behav-
ior, ” Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium, Vancouver, June 1999, pages 111–
120.

��� ���
��� �
��� ���
��� �
��� ���
��� 	
��� 	��
���

� � ��� ��� ��� ��� 	�� 	��
��
�� ���

��� �
�

��� ����� ����� �

!
1"
2#
3$
4%
5&
6

' (
)* +
,+*

-/. � �/��� ���/0

��� ���
��� ���
��� ���
��� ���
��� 	
��� 	
�
��� 	
�
��� 	
�
��� 	
�
��� �

� � 	�� 	
� ��� ���
��
�� ��� ��� ���

���� �
�

��� ����� ��� �"!

#
3
$

%&'(')
*&' +
,

- . � � ��� ��� /

0
2
12 1 3

6
45 5
67 48

Figure 6. Behavior of QoS level and CPU uti-
lization with RM scheduling and R = 0.6 .

[8] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A Feedback-Driven Proportional Allocator for
Real-Rate Scheduling,”Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, January
1999.

[9] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis
of a Reservation-based Feedback Scheduler,”Proceedings of
the 23rd Real-Time Systems Symposium, Austin, December
2002, pages 71–80.

[10] C. Lu, J. Stankovic, S. Son, and G. Tao, “Feedback Con-
trol Real-Time Scheduling: Framework, Modeling, and Al-
gorithms,” Real-Time Systems, July/September 2002, pages
23(1):85–126.

[11] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance Guar-
antees for Web Server End-Systems: A Control-Theoretical
Approach,” IEEE Transactions on Parallel and Distributed
Systems, January 2002, pages 13(1):80–96.

[12] L. Palopoli, L. Abeni, and G. Lipari, “On the Application of
Hybrid Control to CPU Reservation,”Hybrid Systems: Com-

putation and Control, LNCS2623, Prague, April 2003, pages
389–404.

[13] W. Wonham,Linear Multivariable Control: A Geometric Ap-
proach, Third edition, Springer-Verlag, NY, 1985.

[14] C. Desoer and M. Vidyasagar,Feedback Systems: Input-
Output Properties, Academic Press, NY, 1975.

